Abstract

Initial screening of criminal evidence often involves serological testing of stains of unknown composition and/or origin discovered at a crime scene to determine the tissue of origin. This testing is presumptive but critical for contextualizing the scene. Here, we describe a microfluidic approach for body fluid profiling via fluorescent electrophoretic separation of a published mRNA panel that provides unparalleled specificity and sensitivity. This centrifugal microfluidic approach expedites and automates the electrophoresis process by allowing for simple, rotationally driven flow and polymer loading through a 5 cm separation channel; with each disc containing three identical domains, multi-sample analysis is possible with a single disc and multi-sample detection per disc. The centrifugal platform enables a series of sequential unit operations (metering, mixing, aliquoting, heating, storage) to execute automated electrophoretic separation. Results show on-disc fluorescent detection and sizing of amplicons to perform comparably with a commercial ‘gold standard’ benchtop instrument and permitted sensitive, empirical discrimination between five distinct body fluids in less than 10 min. Notably, our microfluidic platform represents a faster, simpler method for separation of a transcriptomic panel to be used for forensically relevant body fluid identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.