Abstract

The development of highly specific biomimetic recognition material is a challenge for rapid detection of harmful residues in foodstuff. In this study, a paper-based boronate affinity metal-organic framework/molecularly imprinted polymer microfluidic chip (FZS-BA@MIP) was constructed based on the in situ construction strategy, which was also designed as a highly specific biomimetic recognition module. Here, the homogeneous zeolitic imidazole framework-8 (ZIF-8) membrane served as a great scaffold and enrichment layer. Besides, the recognition layer of MIP was prepared based on a highly oriented boronate affinity surface imprinting strategy. With the aid of the liquid flow channel, the highly specific enrichment and visual detection for antibiotic residues like kanamycin in actual products were achieved on the paper chip module of an integrated lateral flow platform. The whole analysis process could be accomplished within 30 min. In brief, this study offered a new integrated biomimetic recognition platform for visually detecting harmful veterinary residues containing cis-diols, which demonstrated promising commercial value in point-of-care testing of foodborne hazardous compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call