Abstract

AbstractIn this work, an unsteady‐state strategy for rapid measurement of gas diffusivity in liquid is proposed, which has a quick perturbation of the liquid flow rate in inner tube for obtaining the change of gas flow rate across the membrane with time. The strategy has taken full advantages of the tube‐in‐tube reactor that possesses a high permeability Teflon AF‐2400 membrane to accelerate the diffusion rate of gas to liquid without direct contact between the two phases. With a developed mathematical model fitting the recorded variation of gas flow rate with time, the gas diffusivity in liquid can be determined within 0.5–3 min compared with the conventional methods of 4–14 hr. In addition, the strategy is demonstrated with several gas–liquid systems (O2‐DMSO, CO2‐[Emim] [NTf2] and CO2‐[Bmim] [BF4]) with varied viscosities and temperatures, showing a good agreement with literature values with less than 10% deviation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.