Abstract

Finding new interventions that slow ageing and maintain human health is a huge challenge of our time. The nematode Caenorhabditis elegans offers a rapid in vivo method to determine whether a compound extends its 2 to 3-week lifespan. Measuring lifespan is the standard method to monitor ageing, but a compound that extends lifespan will not necessarily maintain health. Here, we describe the automated monitoring of C. elegans movement from early to mid-adulthood as a faster healthspan-based method to measure ageing. Using the WormGazer™ technology, multiple Petri dishes each containing several C. elegans worms are imaged simultaneously and non-invasively by an array of cameras that can be scaled easily. This approach demonstrates that most functional decline in C. elegans occurs during the first week of adulthood. We find 7 days of imaging is sufficient to measure the dose-dependent efficacy of sulfamethoxazole to slow ageing, compared to 40 days required for a parallel lifespan experiment. Understanding any negative consequences of interventions that slow ageing is important. We show that the long-lived mutant age-1(hx546) stays active for longer than the wild type but it moves slower in early adulthood. Thus, continuous analysis of movement can rapidly identify interventions that slow ageing while simultaneously revealing any negative effects on health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.