Abstract
Surveillance of influenza epidemics is a priority for risk assessment and pandemic preparedness, yet representation of their spatiotemporal intensity remains limited. Using the epidemic of influenza type A in 2016 in Australia, we demonstrated a simple but statistically sound adaptive method of mapping epidemic evolution over space and time. Weekly counts of persons with laboratory confirmed influenza type A infections in Australia in 2016 were analysed by official national statistical region. Weekly standardised epidemic intensity was represented by a standard score (z-score) calculated using the standard deviation of below-median counts in the previous 52weeks. A geographic information system (GIS) was used to present the epidemic progression. There were 79,628 notifications of influenza A infections included. Of these, 79,218 (99.5%) were allocated to a geographical area. The GIS maps indicated areas of elevated epidemic intensity across Australia by week and area that were consistent with the observed start, peak and decline of the epidemic when compared with counts aggregated at the state and territory level. This simple, adaptable approach could improve local level epidemic intelligence in a variety of settings and for other diseases. It may also facilitate increased understanding of geographic epidemic dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.