Abstract

Microfluidics has shown great promise for point-of-care assays due to unique chemical and physical advantages that occur at the micron scale. Furthermore, integration of electrodes into microfluidic systems provides additional capabilities for assay operation and electronic readout. However, while these systems are abundant in biological and biomedical research settings, translation of microfluidic devices with embedded electrodes are limited. In part, this is due to the reliance on expensive, inaccessible, and laborious microfabrication techniques. Although innovative prior work has simplified microfluidic fabrication or inexpensively patterned electrodes, low-cost, accessible, and robust methods to incorporate all these elements are lacking. Here, we present MINX, a low-cost <1 USD and rapid (∼minutes) fabrication technique to manufacture microfluidic device with embedded electrodes. We characterize the structures created using MINX, and then demonstrate the utility of the approach by using MINX to implement an electrochemical bead-based biomarker detection assay. We show that the MINX technique enables the scalable, inexpensive fabrication of microfluidic devices with electronic sensors using widely accessible desktop machines and low-cost materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call