Abstract

We present a novel, user-friendly and widely autonomous point-of-care diagnostic to enable HIV monitoring in resource-poor regions where the current pandemic is most prevalent. To specifically isolate magnetically tagged CD4+ cells directly from patient blood, the low-cost and disposable microfluidic chip operates by dual-force CD4+ cell magnetophoresis; whereby the interplay of flow and magnetic fields governs the trajectory of target cells depending on whether the cell binds to a magnetic microbead. Instrument-free pumping is implemented by a finger-actuated elastic membrane; tagged beads are laterally deflected by a small and re-useable permanent magnet. The single-depth and monolithic microfluidic structure can easily be fabricated in a single casting step. After their magnetophoretic isolation from whole blood, estimation of CD4+ cell concentrations is then measured by bright-field inspection of the capture chamber. In addition, an optional fluorescence measurement can be used for confirmation of the bright-field result if required. On-chip CD4+ estimation produces a linear response over the full range of medically relevant CD4+ cell concentrations. Our technology combines high-efficiency capture (93.0 ± 3.3%) and cell enumeration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.