Abstract

Lignin determination in lignocellulose with the conventional two-step acid hydrolysis method is highly laborious and time-consuming. However, its quantification is crucial to monitor fungal pretreatment of wood, as the increase of acid-insoluble lignin (AIL) degradation linearly correlates with the achievable enzymatic saccharification yield. Therefore, in this study, a new attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy method was developed to track fungal delignification in an easy and rapid manner.Partial least square regression (PLSR) with cross-validation (CV) was applied to correlate the ATR-FTIR spectra with the AIL content (19.9 %–27.1 %). After variable selection and normalization, a PLSR model with a high coefficient of determination (RCV2 = 0.87) and a low root mean square (RMSECV = 0.60 %) were obtained despite the heterogeneous nature of the fungal solid-state fermentation. These results show that ATR-FTIR can reliably predict the AIL content in fungus-treated wood while being a high-throughput method. This novel method can facilitate the transition to the wood-based economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.