Abstract

Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.

Highlights

  • Use of the geomagnetic field for spatial orientation has been documented in all five classes of vertebrates [1,2]

  • Evidence for learned magnetic compass orientation in Siberian hamsters and C57BL/6 mice is of particular interest because to date the large literature on rodent spatial behavior has yielded no other evidence for the use of magnetic cues in these, or other, epigeic rodents

  • In the first test series, six groups of mice were trained to symmetrical directions relative to the magnetic field, i.e., trained direction = north (1 group), = south (1), = west (2), = east (2), and each mouse was tested once in only one of the four magnetic field alignments

Read more

Summary

Introduction

Use of the geomagnetic field for spatial orientation has been documented in all five classes of vertebrates [1,2]. Bats [3,4], two families of subterranean molerats [5,6,7], as well as Siberian hamsters and C57BL/6 mice [8,9,10], have been shown to rely on magnetic cues to determine compass headings. Evidence for learned magnetic compass orientation in Siberian hamsters and C57BL/6 mice is of particular interest because to date the large literature on rodent spatial behavior has yielded no other evidence for the use of magnetic cues in these, or other, epigeic rodents (i.e., species that are active above ground and, typically, have well-developed visual systems). Given the obvious utility of a global reference system provided by the Earth’s magnetic field [1,16], the failure to use magnetic cues in other spatial tasks would be surprising, all the more so because magnetic responses in molerats appear quite robust, having been demonstrated in multiple species belonging to two different families and in studies carried out by at least four different laboratories [5,6,7,14,17,18]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.