Abstract

Diurnal heliotropic leaf movements, microclimate, stomatal conductance and leaf water potential of two leguminous species, Strophostyles helvola and Amphicarpa bracteata, were measured in three different habitats over two growing seasons. The habitats occurred along an environmental gradient from an open, sandy beach to a closed canopy deciduous forest understory. At the beach site, heliotropism in S. helvola resulted in higher irradiances in morning and afternoon hours and lower irradiances during midday periods compared to an horizontal leaf. In an exposed forest site A. bracteata responded within minutes to penetration of the direct solar beam by orienting its leaves to steep angles. In contrast, plants in closed canopy locations showed little diurnal leaf movement. The combined results of leaf energy budget calculations and plant physiological responses suggest that ecological ramifications of these movements vary with habitat. We hypothesize that heliotropism in open habitats increases water use efficiency and maximizes carbon returns on plant investment in photosynthesis. Conversely, we hypothesize that leaf movements in understory habitats represent a morphological mechanism to avoid thermal damage, photoinhibition of the photosynthetic apparatus, and water stress associated with high irradiances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call