Abstract
Centromeres (CENs) are the chromosomal regions promoting kinetochore formation for faithful chromosome segregation. In yeasts, CENs have been recognized as the essential elements for extra-chromosomal DNA stabilization. However, the epigeneticity of CENs makes their localization on individual chromosomes very challenging, especially in many not well-studied nonconventional yeast species. Previously, we applied a stepwise method to identify a 500-bp CEN5 from Scheffersomyces stipitis chromosome 5 and experimentally confirmed its critical role on improving plasmid stability. Here we report a library-based strategy that integrates in silico GC3 chromosome scanning and high-throughput functional screening, which enabled the isolation of all eight S. stipitis centromeres with a 16 000-fold reduction in sequence very efficiently. Further identification of a 125-bp CEN core sequence that appears multiple times on each chromosome but all in the unique signature GC3-valley indicates that CEN location might be accurately discerned by their local GC3 percentages in a subgroup of yeasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.