Abstract

In this work, we propose to use deep material networks (DMNs) as a surrogate model for full-field computational homogenization to inversely identify material parameters of constitutive inelastic models for short fiber-reinforced thermoplastics (SFRTs).Micromechanics offers an elegant way to obtain constitutive models of materials with complex microstructure, as these emerge naturally once an accurate geometrical representation of the microstructure and expressive material models of the constituents forming the material are known. Unfortunately, obtaining the latter is non-trivial, essentially for two reasons. For a start, experiments on pure samples may not accurately represent the conditions present in the composite. Moreover, the manufacturing process may alter the material behavior, and a subsequent modification is necessary. To avoid modeling the physics of the manufacturing process, one may identify the material models of the individual phases of the composite based on experiments on the composite. Unfortunately, this procedure requires conducting time-consuming simulations.In the work at hand, we use Deep Material Networks to replace full-field simulations, and to carry out an inverse parameter optimization of the matrix model in a SFRT. We are specifically concerned with the long-term creep response of SFRTs, which is particularly challenging to both experimental and simulation-based approaches due to the strong anisotropy and the long time scales involved. We propose a dedicated fully coupled plasticity and creep model for the polymer matrix and provide details on the experimental procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.