Abstract
Transport of intensity equation (TIE) method can acquire sample phase distributions with high speed and accuracy, offering another perspective for cellular observations and measurements. However, caused by incorrect focal plane determination, blurs and halos are induced, decreasing resolution and accuracy in both retrieved amplitude and phase information. In order to obtain high-accurate sample details, we propose TIE based in-focus correction technique for quantitative amplitude and phase imaging, which can locate focal plane and then retrieve both in-focus intensity and phase distributions combining with numerical wavefront extraction and propagation as well as physical image recorder translation. Certified by both numerical simulations and practical measurements, it is believed the proposed method not only captures high-accurate in-focus sample information, but also provides a potential way for fast autofocusing in microscopic system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.