Abstract

Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SNpc) and intraneuronal α-synuclein (α-syn) inclusions. It is highly needed to establish a rodent model that recapitulates the clinicopathological features of PD within a short period to efficiently investigate the pathological mechanisms and test disease-modifying therapies. To this end, we analyzed three mouse lines, i.e., wild-type mice, wild-type human α-syn bacterial artificial chromosome (BAC) transgenic (BAC-SNCA Tg) mice, and A53T human α-syn BAC transgenic (A53T BAC-SNCA Tg) mice, receiving dorsal striatum injections of human and mouse α-syn preformed fibrils (hPFFs and mPFFs, respectively). mPFF injections induced more severe α-syn pathology in most brain regions, including the ipsilateral SNpc, than hPFF injections in all genotypes at 1-month post-injection. Although these Tg mouse lines expressed a comparable amount of α-syn in the brains, the mPFF-injected A53T BAC-SNCA Tg mice exhibited the most severe α-syn pathology as early as 0.5-month post-injection. The mPFF-injected A53T BAC-SNCA Tg mice showed a 38% reduction in tyrosine hydroxylase (TH)-positive neurons in the ipsilateral SNpc, apomorphine-induced rotational behavior, and motor dysfunction at 2 months post-injection. These data indicate that the extent of α-syn pathology induced by α-syn PFF injection depends on the types of α-syn PFFs and exogenously expressed α-syn in Tg mice. The mPFF-injected A53T BAC-SNCA Tg mice recapitulate the key features of PD more rapidly than previously reported mouse models, suggesting their usefulness for testing disease-modifying therapies as well as analyzing the pathological mechanisms.

Highlights

  • Parkinson’s disease (PD) is the most common neurodegenerative movement disorder

  • Among the mouse α-Syn preformed fibrils (mPFFs)-injected mice, the A53T bacterial artificial chromosome (BAC)-SNCA Tg mice exhibited the most severe α-Syn pathology as early as 0.5 month (2 weeks) post-injection. Consistent with these observations, in vitro fibrillization assay revealed that a mixture of A53T human α-Syn and mouse α-Syn seeded with mPFFs aggregated most rapidly among the conditions tested

  • Our data indicate that the extent of α-Syn pathology induced by α-Syn preformed fibrils (PFFs) injection depends on the types of α-Syn PFFs and exogenously expressed α-Syn in Tg mice

Read more

Summary

Introduction

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. Pathological features of PD include dopaminergic neuron loss in the substantia nigra pars compacta (SNpc) and intraneuronal α-Synuclein (α-Syn) inclusions called Lewy bodies (LBs). Since there is no treatment to either halt or slow the progression of PD, it is highly demanded to establish a rodent model that recapitulates the clinicopathological features of PD within a short period to efficiently investigate the pathological mechanisms and test disease-modifying therapies (DMTs)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call