Abstract

In this study we tested the effects of rapid induced resistance of the silver birch, Betula pendula, on the performance and immune defense of the gypsy moth, Lymantria dispar. We also measured the effects of defoliation on the concentrations of plant secondary metabolites, particularly on phenolics and terpenoids. It was found that severe natural defoliation (by moth larvae) of silver birch led to an increase in lipophilic flavonoids on the leaf surface. The concentration of some simple phenolics and monoterpenes (linalool and geraniol) also increased, while that of several glycosides of quercetin decreased. The female pupal weights and survival rates of moths decreased, and larval development time increased, when the insects fed on defoliated trees. However, the feeding of caterpillars with the leaves of defoliated trees led to an increase in lysozyme-like activity in their hemolymph, with an increase in their ability to encapsulate potential parasites. Our data show that the silver birch deploys a rapid chemical defense against gypsy moth larvae. We suggest that lipophilic flavonoids are important compounds in the direct silver birch defense against L. dispar caterpillars. The increased strength of immune defense of insects exposed to trees that had deployed a rapid induced resistance may be an adaptation of the herbivores to resist the rising density of parasites when host population density is high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.