Abstract

Biochar with adjustable redox activity is an effective strategy for immobilization of excess arsenic (As(III)) contaminated soil. However, biochar exhibits limitations in terms of electron transfer efficiency and immobilization efficiency due to insufficient activation energy. In this study, As(III) in the soil was rapidly immobilized by adding magnetic biochar (Fe-BC) and introducing microwave irradiation energy to enhance electron transport efficiency. The results showed that the pore structure and iron species (ZVI, Fe3O4) loaded onto the biochar could be modulated by controlling the temperature and time of microwave pyrolysis, which enhanced the microwave absorption capacity and the immobilization performance of As. After adding Fe-BC (10 wt%) and treating with microwave irradiation for 3 h, the content of As(III) in the soil was reduced to 54.56 %. Compared with the conventional heating treatment, the percentage of stabilized As (residual form) increased by 11.21 %. The localized hot spots formed through the absorption of microwave energy by biochar promote the formation of arsenic-containing mineral crystals (FeAsO4 and Fe3AsO7), thus enhancing the immobilization efficiency. In addition, microwave-induced electron transfer facilitated the oxidation of As(III) to As(V) by surface quinone and carbonyl groups on the Fe-BC. Density functional theory calculation further proved that the surface groups of the Fe-BC had a stronger electron-withdrawing ability under microwave irradiation, thereby promoting the adsorption and immobilization of As(III). This work provided a new perspective on the technology of rapid remediation of heavy metals contaminated soil using biochar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.