Abstract
A combination of Fresnel law and machine learning method is proposed to identify the layer counts of 2D materials. Three indexes, which are optical contrast, red-green-blue, total color difference, are presented to illustrate and simulate the visibility of 2D materials on Si/SiO2 substrate, and the machine learning algorithms, which are k-mean clustering and k-nearest neighbors, are employed to obtain thickness database of 2D material and test the optical images of 2D materials via red-green-blue index. The results show that this method can provide fast, accurate and large-area property of 2D material. With the combination of artificial intelligence and nanoscience, this machine learning assisted method eases the workload and promotes fundamental research of 2D materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.