Abstract
Different soybean varieties vary greatly in their nutritional value and composition. Screening for superior varieties is also essential for the development of the soybean seed industry. The objective of the paper was to analyze the feasibility of terahertz (THz) frequency-domain spectroscopy and chemometrics for soybean variety identification. Meanwhile, a grey wolf optimizer-support vector machine (GWO-SVM) soybean variety identification model was proposed. Firstly, the THz frequency-domain spectra of experimental samples (6 varieties, 270 in total) were collected. Principal component analysis (PCA) was used to analyze the THz spectra. After that, 203 samples from the calibration set were used to establish a soybean variety identification model. Finally, 67 samples from the test set were used for prediction validation. The experimental results demonstrated that THz frequency-domain spectroscopy combined with GWO-SVM could quickly and accurately identify soybean varieties. Compared with discriminant partial least squares (DPLS) and particles swarm optimization support vector machine, GWO-SVM combined with the second derivative could establish a better soybean variety identification model. The overall correct identification rate of its prediction set was 97.01%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Frontiers in Plant Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.