Abstract

BackgroundSince COVID-19 was declared the pandemic by the WHO, it has continued to spread. There is a need for rapid, efficient, and accurate diagnostic kits and techniques to control its spread.ObjectiveThe diagnostic capability of the qRT-PCR-based Real-Q 2019-nCoV Detection Kit and dPCR-based Dr. PCR™ Di20K COVID-19 Detection Kit was compared and evaluated.MethodsDiagnostic tests for COVID-19 were performed using two different COVID-19 kits and 301 individual specimens with confirmed COVID-19 positive/negative at the government-accredited medical institution. Assessment of diagnostic capability was measured through diagnostic sensitivity, specificity, Cohen’s Kappa coefficient, and dilutional linearity tests.ResultsThe COVID-19 diagnostic test results using two kits and 301 individual specimens perfectly matched the pre-diagnosis results of the medical institution. In addition, the measurement results of diagnostic sensitivity and specificity were “1”, indicating high diagnostic capability. Cohen’s Kappa coefficient value is “1”, which means that the diagnosis concordance between the two kits is “Almost Perfect”. As a result of dilutional linearity tests to evaluate their detection capability, both kits were measured with very high detection reliability.ConclusionHere, we propose that the dPCR-based Dr. PCR™ Di20K COVID-19 Detection Kit has the advantages of the dPCR method reported in the previous study and is suitable for point-of-care testing (POCT) by overcoming the limitations of space, test time, cross-over contamination, and biosafety due to omitting RNA extraction process.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13258-022-01242-z.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.