Abstract

Aberrant DNA methylation patterns have been identified in a variety of human diseases, particularly cancer. Pyrosequencing has evolved in recent years as a sensitive and accurate method for the analysis and quantification of the degree of DNA methylation in specific target regions. However, the number of candidate genes that can be analyzed in clinical specimens is often restricted by the limited amount of sample available. Here, we present a novel screening approach that enables the rapid identification of differentially methylated regions such as promoters by pyrosequencing of etiologically homogeneous sample pools after bisulfite treatment. We exemplify its use by the analysis of five genes (CDKN2A, GSTP1, MLH1, IGF2, and CTNNB1) involved in the pathogenesis of human hepatocellular carcinoma using pools stratified for different parameters of clinical importance. Results were confirmed by the individual analysis of the samples. The screening identified all genes displaying differential methylation successfully, and no false positives occurred. Quantitative comparison of the pools and the samples in the pool analyzed individually showed a deviation of approximately 1.5%, making the method ideally suited for the identification of diagnostic markers based on DNA methylation while saving precious DNA material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.