Abstract

Rapid detection of Mycobacterium tuberculosis complex (MTBC) is a critical step in controlling tuberculosis (TB). In this study, we used IS6110 as the specific identification target to develop a novel hybridization signal amplification method (HSAM) for the rapid and direct detection of MTBC from clinical sputum specimens. This system consists of magnetic bead-linked capture probes for target isolation, dextran-based nanoparticles for amplifying the reporter molecule (biotinylated-FITC), and detection probes (2B-DNA) for binding the nanoparticles. Both the capture and detection probes were specific to the IS6110 target sequence. Our results determined that as few as 10 copies of the IS6110 sequence or 10 M. tuberculosis bacteria could be detected, indicating that the HSAM assay is as sensitive as conventional PCR, and the assay was specific enough to distinguish MTBC from nontuberculosis mycobacteria (NTM). A total of 176 clinical sputum specimens were collected for HSAM evaluation, and the results were compared to those from traditional culture and biochemical identification techniques. This assay had a sensitivity of 88.3%, a specificity of 91.8%, a positive predictive value of 93.8% and a negative predictive value of 84.8% for the detection of MTBC. This technique is highly sensitive and specific, is easy to perform, and does not require any sophisticated detection equipment; thus, this approach has great potential in clinical TB detection and diagnostic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.