Abstract

It has become increasingly evident that gene expression processes in eukaryotes involve communication and coordination between many complex, independent macromolecular machines. To query these processes and to explore the potential relationships between them in the budding yeast Saccharomyces cerevisiae, we designed a versatile reporter using multicolor high-throughput flow cytometry. Due to its design, this single reporter exhibits a distinctive signature for many defects in gene expression including transcription, histone modification, pre-mRNA splicing, mRNA export, nonsense-mediated decay, and mRNA degradation. Analysis of the reporter in 4967 nonessential yeast genes revealed striking phenotypic overlaps between chromatin remodeling, histone modification, and pre-mRNA splicing. Additionally, we developed a copper-inducible reporter, with which we demonstrate that 5-fluorouracil mimics the mRNA decay phenotype of cells lacking the 3'-5' exonuclease Rrp6p. Our reporter is capable of performing high-throughput, rapid, and large-scale screens to identify and characterize genetic and chemical perturbations of the major eukaryotic gene expression processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.