Abstract

Invasive fungal disease often plays an important role in the morbidity and mortality of immunocompromised patients. The poor sensitivity of current fungal blood culture and histological practices has led to the development of highly sensitive and specific molecular techniques, such as the PCR. Sequence variability of the internal transcribed spacer 2 (ITS2) region of fungi is potentially useful in rapid and accurate diagnosis of clinical fungal isolates. PCR with fungus-specific primers targeted toward conserved sequences of the 5.8S and 28S ribosomal DNA (rDNA) results in amplification of the species-specific ITS2 regions, which are variable in amplicon length. We have made use of the ABI PRISM 310 genetic analyzer and the ABI PRISM 310 GeneScan analysis software for the determination of variable size differences of the ITS2 region of clinically important fungi, including Candida and non-Candida yeasts, Aspergillus species, and a variety of dermatophytes. No cross-reaction occurred when samples were tested against human and bacterial genomic DNA. We have found that most clinically significant fungal isolates can be differentiated by this method, and it therefore serves to be a promising tool for the rapid (<7 h) diagnosis of fungemia and other invasive fungal infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.