Abstract

A multidimensional approach for the identification of fatty acid methyl esters (FAME) based on GC/MS analysis is described. Mass spectra and retention data of more than 130 FAME from various sources (chain lengths in the range from 4 to 24 carbon atoms) were collected in a database. Hints for the interpretation of FAME mass spectra are given and relevant diagnostic marker ions are deduced indicating specific groups of fatty acids. To verify the identity of single species and to ensure an optimized chromatographic resolution, the database was compiled with retention data libraries acquired on columns of different polarity (HP-5, DB-23, and HP-88). For a combined use of mass spectra and retention data standardized methods of measurement for each of these columns are required. Such master methods were developed and always applied under the conditions of retention time locking (RTL) which allowed an excellent reproducibility and comparability of absolute retention times. Moreover, as a relative retention index system, equivalent chain lengths (ECL) of FAME were determined by linear interpolation. To compare and to predict ECL values by means of structural features, fractional chain lengths (FCL) were calculated and fitted as well. As shown in an example, the use of retention data and mass spectral information together in a database search leads to an improved and reliable identification of FAME (including positional and geometrical isomers) without further derivatizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.