Abstract

Mycobacterium tuberculosis antimicrobial resistance has been continually reported and is a major public health issue worldwide. Rapid prediction of drug resistance is important for selecting appropriate antibiotic treatments, which significantly increases cure rates. Gene sequencing technology has proven to be a powerful strategy for identifying relevant drug resistance information. This study established a sequencing method and bioinformatics pipeline for resistance gene analysis using an Oxford Nanopore Technologies sequencer. The pipeline was validated by Sanger sequencing and exhibited 100% concordance with the identified variants. Turnaround time for the nanopore sequencing workflow was approximately 12 h, facilitating drug resistance prediction several weeks earlier than that of traditional phenotype drug susceptibility testing. This study produced a customized gene panel assay for rapid bacterial identification via nanopore sequencing, which improves the timeliness of tuberculosis diagnoses and provides a reliable method that may have clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.