Abstract

High-pressure photoionization time-of-flight mass spectrometry (HPPI-TOFMS) combined with dynamic headspace sampling was developed for rapid identification of adulteration in extra virgin olive oil (EVOO). The volatile organic compound (VOC) fingerprints of EVOO, refined rapeseed oil (r-RO), peanut oil (PO), corn oil (CO), fragrant rapeseed oil (f-RO), and sunflower oil (SO) were obtained in just 1.5 min, which enabled satisfactory classification of different edible oils. 1,4-Bis(methylene)cyclohexane and dimethyl disulfide were unique VOCs in r-RO and f-RO, respectively, while 2,5-dimethylpyrazine and 2-methylpyrazine were distinctive VOCs in PO. Percentages as low as 3% r-RO, 1% PO, and 1% f-RO in r-RO-EVOO, PO-EVOO, and f-RO-EVOO mixtures, respectively, were successfully identified based on the characteristic VOCs. Linear regression equations of these VOCs were established and utilized for predicting the adulteration proportions. The good agreements between the actual adulteration proportions and the predicted ones demonstrated that HPPI-TOFMS was reliable for the quantification of EVOO adulteration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.