Abstract
This study aims to identify high-emission vehicles in urban traffic management. Existing high-emission vehicle identification models typically overlook the dispersed anomaly data distribution, and machine learning anomaly detection methods face difficulties in learning decision boundaries, leading to reduced detection performance. To address these issues, this study proposes a semi-supervised learning method based on data fusion and deep anomaly detection. This method integrates the chassis and engine dynamometer test data with on-road remote sensing system data to obtain more comprehensive vehicle emission information. Experimental results demonstrate that the proposed method introduces a penalty mechanism for anomaly samples, encouraging the model to increase the dissimilarity in similarity between normal and abnormal data at the latent data distribution level. In vehicle emission datasets from different regions, this method achieves over 95% AUC, demonstrating strong applicability and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.