Abstract

Abstract. Located at the transition between monsoon- and westerly-dominated climate systems, major rivers draining the western North Qilian Shan incise deep, narrow canyons into latest Quaternary foreland basin sediments of the Hexi Corridor. Field surveys and previously published geochronology show that the Beida River incised 130 m at the mountain front over the Late Pleistocene and Holocene at an average rate of 6 m kyr−1. We hypothesize that a steep knickzone, with 3 % slope, initiated at the mountain front and has since retreated to its present position, 10 km upstream. Additional terrace dating suggests that this knickzone formed around the mid-Holocene, over a duration of less than 1.5 kyr, during which incision accelerated from 6 m kyr−1 to at least 25 m kyr−1. These incision rates are much faster than the uplift rate across the North Qilian fault, which suggests a climate-related increase in discharge drove rapid incision over the Holocene and formation of the knickzone. Using the relationship between incision rates and the amount of base level drop, we show the maximum duration of knickzone formation to be ∼700 years and the minimum incision rate to be 50 m kyr−1. We interpret that this period of increased river incision corresponds to a pluvial lake-filling event at the terminus of the Beida River and correlates with a wet period driven by strengthening of the Southeast Asian Monsoon.

Highlights

  • An incising river responds to tectonic or climatic perturbation by adjusting its slope, expressed by formation of knickpoints or knickzones (Crosby and Whipple, 2006; Tucker and Whipple, 2002; Whittaker, 2012), and through changes of its channel width (Finnegan et al, 2005)

  • Through modeling of incision of the Beida River, as recorded by its profile and stream terraces preserved along its course, we suggest this knickzone was formed during a short period, 4000– 5000 years before present, under an exceedingly fast incision rate

  • Our work demonstrates the capability of bedrock rivers in arid regions to incise deep channels and form fast retreating knickpoints within a short period

Read more

Summary

Introduction

An incising river responds to tectonic or climatic perturbation by adjusting its slope, expressed by formation of knickpoints or knickzones (Crosby and Whipple, 2006; Tucker and Whipple, 2002; Whittaker, 2012), and through changes of its channel width (Finnegan et al, 2005). Through modeling of incision of the Beida River, as recorded by its profile and stream terraces preserved along its course, we suggest this knickzone was formed during a short period, 4000– 5000 years before present, under an exceedingly fast incision rate. This is most likely to be the result of an increase in river discharge, and perhaps a commensurate decrease in sediment supply

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call