Abstract

Carbon-black-supported nanoparticles (CNPs) have attracted considerable attention for their intriguing catalytic properties and promising applications. The traditional liquid synthesis of CNPs commonly involves demanding operation conditions and complex pre- or post-treatments, which are time consuming and energy inefficient. Herein, a rapid, scalable, and universal strategy is reported to synthesize highly dispersed metal nanoparticles embedded in a carbon matrix via microwave irradiation of carbon black with preloaded precursors. By optimizing the amount of carbon black, the microwave absorption is dramatically improved while the thermal dissipation is effectively controlled, leading to a rapid temperature increase in carbon black, ramping to 1270 K in just 6 s. The whole synthesis process requires no capping agents or surfactants, nor tedious pre- or post-treatments of carbon black, showing tremendous potential for mass production. As a proof of concept, the synthesis of ultrafine Ru nanoparticles (≈2.57 nm) uniformly embedded in carbon black using this microwave heating technique is demonstrated, which displays remarkable electrocatalytic performance when used as the cathode in a Li-O2 battery. This microwave heating method can be extended to the synthesis of other nanoparticles, thereby providing a general methodology for the mass production of carbon-supported catalytic nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.