Abstract

The paper reports on the ability of people to rapidly adapt in localizing virtual sound sources in both azimuth and elevation when listening to sounds synthesized using non-individualized head-related transfer functions (HRTFs). Participants were placed within an audio-kinesthetic Virtual Auditory Environment (VAE) platform that allows association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues through the use of a tracked physical ball manipulated by the subject. This set-up offers a natural perception-action coupling, which is not limited to the visual field of view. The experiment consisted of three sessions: an initial localization test to evaluate participants' performance, an adaptation session, and a subsequent localization test. A reference control group was included using individual measured HRTFs. Results show significant improvement in localization performance. Relative to the control group, participants using non-individual HRTFs reduced localization errors in elevation by 10° with three sessions of 12 min. No significant improvement was found for azimuthal errors or for single session adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.