Abstract

This paper presents a rapid guided ultrasonic wave inspection approach through global inspection by phased array beamforming and local damage evaluation via wavenumber analysis. The global-local approach uses a hybrid system consisting of a PZT wafer and a non-contact laser vibrometer. The overall inspection is performed in two steps. First, a phased array configured by a small number of measurements performs beamforming and beamsteering over the entire plate in order to detect and locate the presence of the damage. A local area is identified as target damage area for the second step. Then a high density wavefield measurement is taken over the target damage area and a spatial wavenumber imaging is performed to quantitatively evaluate the damage. The two-step inspection has been applied to locate and quantify impact-induced delamination damage in a carbon fiber reinforced polymer composite plate. The detected delamination location, size and shape agree well with those of an ultrasonic C-scan. For the test case studied in this work the global-local approach reduced the total composite inspection (damage detection and characterization) time by ∼97% compared to using a full scan approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call