Abstract

Early stage nucleation morphologies of spatially localized nanocrystalline diamond (NCD) micro-anvils grown on (100)-oriented single crystal diamond (SCD) anvil surfaces were analyzed and investigated for applications in high pressure studies on materials. NCD was grown on SCD using Microwave Plasma Chemical Vapor Deposition (MPCVD) for brief time intervals ranging from 1–15 minutes. Early stage film morphologies were characterized using scanning electron microscopy (SEM) and Raman spectroscopy and were compared to films grown for several hours. Rapid nucleation and growth of NCD on SCD is demonstrated without any pre-growth seeding of the substrate surface. As grown NCD diamond micro-anvils on SCD were used to generate static pressure of 0.5 Terapascal (TPa) on a tungsten sample as measured by synchrotron x-ray diffraction in a diamond anvil cell. Atomic force microscopy (AFM) analysis after decompression from ultrahigh pressures showed that the detachment of the NCD stage occurred in the bulk of the SCD and not at the interface, suggesting significant adhesive bond strength between nanocrystalline and single crystal diamond.

Highlights

  • Single crystal diamond (SCD) is the hardest known terrestrial material and widely utilized in studies on materials under extreme conditions

  • Localized nanocrystalline diamond has been grown on single crystal diamond substrates are characterized by Raman spectroscopy, Scanning Electron Microscopy, and Atomic Force Microscopy and utilized in studies on materials under extreme conditions

  • Rapid nucleation of nanocrystalline diamond on single crystal diamond anvils has been demonstrated without implementing any pre-growth surface seeding

Read more

Summary

Introduction

Single crystal diamond (SCD) is the hardest known terrestrial material and widely utilized in studies on materials under extreme conditions. In method 1 MPCVD is used to selectively grow nanocrystalline diamond on a localized region of the anvil culet thereby generating a second-stage that is chemically bonded to the primary SCD anvil surface. Far this fabrication technique has proven to be highly reproducible for the production of NCD two-stage anvils[6,7]. In heteroepitaxial MPCVD NCD growth processes, it is required that the substrate be prepared by seeding its surface with nanocrystalline diamond crystallites that act as growth catalysts for the NCD film[11,12]. Films grown with high re-nucleation rates that yield smaller grain sizes (

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.