Abstract

Efficient geometric evaluation of roads and tunnels is crucial to traffic management, especially in post-disaster situations. This paper reports on a study of the geometric feature detection method based on multi-sensor mobile laser scanning (MLS) system data. A portable, low-cost system that can be mounted on vehicles and utilizes integrated laser scanning devices was developed. Coordinate systems and timestamps from numerous devices were merged to create 3D point clouds of objects being measured. Feature points reflecting the geometric information of measuring objects were retrieved based on changes in the point cloud's shape, which contributed to measuring the road width, vertical clearance, and tunnel cross section. Self-developed software was used to conduct the measuring procedure, and a real-time online visualized platform was designed to reconstruct 3D models of the measured objects, forming a 3D digital map carrying the obtained geometric information. Finally, a case study was carried out. The measurement results of several representative nodes are discussed here, verifying the robustness of the proposed system. In addition, the main sources of interference are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call