Abstract

Gynogenesis is an important reproductive mode in fish and is used fairly widely in genetic breeding. Gynogenetic offspring (2n = 100, abbreviated as GRCC) were generated through the distant hybridization of Carassius auratus red var. (2n = 100, RCC) (♀) × Megalobrama amblycephala (2n = 48, BSB) (♂), in which male and female individual both had normal gonadal development. To better understand genomic and epigenetic consequences of GRCC, fluorescence in situ hybridization, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analysis were performed on GRCC and RCC. GRCC possess two sets of RCC-derived chromosomes and one to three microchromosomes, in which 30.44% of bands inherit these patterns from red crucian carp and blunt snout bream, and 24.12% of novel bands were found by amplified fragment length polymorphism analysis. In terms of methylation, the DNA methylation level of GRCC was lower than that of their parents, and 45.29% of methylation patterns in GRCC were altered compared with their parents. GRCC show a special genetic composition in the genome, in which genome-wide changes and the adjustment of DNA methylation levels and patterns occurred. The result revealed that genetic and epigenetic changes were rapidly triggered in gynogenetic fish that were derived from distant hybridization, showing a special genetic composition in the genome. This study provides new insights into fish genetic breeding and the evolutionary patterns of the vertebrate genome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call