Abstract

Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call