Abstract

We introduce a controlled ionic coacervation (CIC) process that rapidly forms uniform, gel-like latex films with significant mechanical integrity without loss of water from the film. This process uses latex particles that contain both strong cationic charges and weak protonated acid groups. An increase in pH ionizes the weak acid and triggers the rapid setting of the latex films. The necessary increase in pH can be achieved by coating the latex onto an alkaline surface (such as concrete) or by controlled release of a fugitive acid (such as carbon dioxide). We explore the effect of latex composition and concentration on this process. We show that the CIC process does not require a water-soluble polymer to obtain the rapid-set film properties. Our proposed mechanism for CIC process is consistent with models for rapid, irreversible, particle-particle aggregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.