Abstract

Bats fly using significantly different wing motions from other fliers, stemming from the complex interplay of their membrane wings' motion and structural properties. Biological studies show that many bats fly at Strouhal numbers, the ratio of flapping to flight speed, 50-150% above the range typically associated with optimal locomotion. We use high-resolution fluid-structure interaction simulations of a bat wing to independently study the role of kinematics and material/structural properties in aerodynamic performance and show that peak propulsive and lift efficiencies for a bat-like wing motion require flapping 66% faster than for a symmetric motion, agreeing with the increased flapping frequency observed in zoological studies. In addition, we find that reduced membrane stiffness is associated with improved propulsive efficiency until the membrane flutters, but that incorporating microstructural anisotropy arising from biological fibre reinforcement enables a tenfold reduction of the flutter energy while maintaining high aerodynamic efficiency. Our results indicate that animals with specialized flapping motions may have correspondingly specialized flapping speeds, in contrast to arguments for a universally efficient Strouhal range. Additionally, our study demonstrates the significant role that the microstructural constitutive properties of the membrane wing of a bat can have in its propulsive performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call