Abstract
We report a unique simultaneous fingerprint (FP) and high-wavenumber (HW) Raman spectroscopy technique coupled with a beveled fiber-optic Raman probe for improving in vivo detection of gastric intestinal metaplasia (IM)-precancerous lesions in real-time during clinical gastroscopy. A total of 4,520 high-quality in vivo FP/HW gastric Raman spectra (normal = 4,178; IM = 342) were acquired from 157 gastric patients undergoing endoscopic examination. Multivariate diagnostic algorithms based on principal components analysis and linear discriminant analysis together with the leave-one tissue site-out, cross-validation on in vivo tissue Raman spectra yield the diagnostic sensitivities of 89.3%, 89.3%, and 75.0%; specificities of 92.2%, 84.4%, and 82.0%; positive predictive values of 52.1%, 35.2%, and 28.4%; and negative predictive values of 98.9%, 98.8%, and 97.2%, respectively, by using the integrated FP/HW, FP, and HW Raman techniques for identifying IM from normal gastric tissue. Further, ROC curves generated show that the integrated FP/HW Raman technique gives the integration area under the ROC curve of 0.92 for IM classification, which is superior to either FP (0.89) or HW Raman (0.86) technique alone. This work demonstrates for the first time that the simultaneous FP/HW fiber-optic Raman spectroscopy has great potential to enhance early diagnosis of gastric precancer in vivo during routine endoscopic examination. Cancer Prev Res; 9(6); 476-83. ©2016 AACR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.