Abstract

This paper describes a simple and convenient procedure for fabricating polycrystalline titania nanofibers with controllable diameter and porous structures. By combining sol-gel technique and electrospinning, nanofibers made of poly(vinyl pyrrolidone) (PVP) and amorphous TiO<sub>2</sub> were firstly obtained by electrospinning an ethanol solution containing both PVP and titanium tetraisopropoxide under appropriate high voltages. These nanofibers could be subsequently converted to anatase without changing their morphology via calcination in air at 500°C. The average diameter of these ceramic nanofibers could be controlled in the range from 20 to 200 nm by varying a number of parameters such as the voltage, the feeding rate of the precursor solution, the ratio between PVP and titanium tetraisopropoxide, and their concentrations in the alcohol solution. Titanium tetraisopropoxide could be transferred to titania nanofibers with ~100% yield by using this technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call