Abstract

We reported a one-pot, no added seeding and green method to synthesize gold nanoflowers, in which HAuC4 and H2O2 were added one by one into the alkaline protocatechuic aldehyde solution at room temperature. Au(III) was partially reduced by protocatechuic aldehyde to produce primary Au nanocrystals, and then Au nanocrystals agglomerated into loose flower-like nanoparticles as seeds, which catalyzed H2O2 reduction of the residual Au(III), thus accelerating the formation of compact 3D gold nanoflowers. The key synthesis strategy was to use protocatechuic aldehyde as a structure-induced agent to influence the growth of gold nanoflowers. The pH value of growth solution could tune the size and/or morphology of gold nanoflowers through its influence on the adhesion force of protocatechuic aldehyde on gold surfaces and the species type of Au(III) complexes. When the pH value of growth solution was above 7.26 (the pKa of protocatechuic aldehyde), the flower-like of gold nanostructural architectures with different sizes could be fabricated. The obtained gold nanoflowers had a large dimension of 198 and 157 nm at the pH of 7.6 and 8, respectively. Size control of gold nanoflowers can be accomplished in the growth solutions of pH 9.4-12.0 with a similar diameter around 60 nm. The as-synthesized gold nanoflowers exhibited good stability and have the prospects for surface-enhanced Raman scattering enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call