Abstract
The successful development of organic-inorganic perovskite materials mainly based on CH3NH3PbI3 has improved the PCE of solar cells significantly and reduced the fabrication cost relatively. The majority of the researches focused on studying different ways of improving the performance and stability of perovskite devices with less attention paid to minimizing the time of fabrication. The reduction of fabrication time can simultaneously reduce the fabrication cost and boost the industrial manufacturing capability. In this work, we report a simple and rapid method of making CH3NH3PbI3 layer at ambient laboratory conditions and applying it for advancing the photon-to-electricity conversion efficiency of liquid-state CuO-based perovskite-sensitized solar cells. The whole fabrication process starting from electrodepositing CuO to sandwiching counter electrode entails less than 10 min and the device efficiency reaches up to 0.35% under one sun illumination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.