Abstract

The peripheral blood mononuclear cells from patients with B-chronic lymphocytic leukemia (B-CLL) were incubated for 0.5 h to 72 h in the presence of the phorbol ester TPA, the calcium ionophore A23187, or a combination of these reagents. Using Northern blot analysis, total cellular RNA was prepared from cells harvested at different time points and hybridized with DNA clones specific for the protooncogenes c-fos and c-myc. While untreated control cells lacked detectable amounts of messenger RNA (mRNA), increase in the level of c-fos mRNA was noted as early as 0.5 h after exposure to the inducers. Peaks of c-fos and c-myc transcript accumulation were seen at 1 h and 4 h after induction, respectively. The most effective inducer was double stimulation with TPA plus A23187. The kinetics of c-fos and c-myc mRNA accumulation in B- CLL appear to be similar to those reported for normal lymphocytes that have been either activated by physiologic external stimuli or by direct activators of protein kinase C and calcium flux (such as TPA and A23187). No direct link between oncogene expression and proliferation or differentiation parameters could be established. These results document that expression of c-fos and c-myc genes, which are among the earliest events following stimulation of the protein kinase signal transduction pathway, can be successfully induced in B-CLL cells. The data provide further evidence for the hypothesis that signal transmission downstream of protein kinase C is intact in B-CLL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.