Abstract

The QTP (Qinghai-Tibet Plateau) holds the greatest concentration of high-elevation inland lakes in the world, and most of these lakes are located in the QTP endorheic basin. Accelerated lake expansion in the endorheic basin since 2000 has been confirmed by many studies, but there is disagreement as to which components of the water balance explain most of the lake expansion. In this paper, based on Landsat images, meteorological data, glacier data and permafrost monitoring data, we analyzed the spatial–temporal changes in lake area and further explored the driving factors behind rapid lake expansion in different zones in the endorheic basin. The results suggested that the spatial pattern of trends in lake area in the endorheic basin from 2000 to 2017 showed a southwest-northeast transition from contracting to slightly expanding to rapidly expanding. More importantly, the dramatic lake expansion observed in most regions was statistically significant (0.01 ~ 26.29 km2/yr). Although retreating glaciers may have contributed to lake growth, this can not fully explain the recent lake expansion. We find that increasing precipitation was the primary driver behind lake expansion, and that permafrost degradation accelerated lake expansion. Lakes on the northern slope of the Gangdise Mountains, fed by the most rapidly retreating glaciers, were relatively stable or even contracted. In contrast, most of the non-glacier-fed lakes in the Hoh Xil region and the central endorheic basin nevertheless experienced significant expansion and slight expansion, respectively, which were mainly attributed to the greatest increase in AP (annual precipitation). Remarkable lake expansion was found in the continuous permafrost zone. The increasing ALT (active layer thickness) and soil temperature of permafrost resulted in an increase in meltwater from ground ice, the partial release of soil moisture and an amount of unfrozen water content, which has contributed to supply lakes and accelerated lake expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call