Abstract
In isotropic media, we use the scalar acoustic wave equation to perform reverse time migration (RTM) of the recorded pressure wavefield data. In anisotropic media, P- and SV-waves are coupled, and the elastic wave equation should be used for RTM. For computational efficiency, a pseudo-acoustic wave equation is often used. This may be solved using a coupled system of second-order partial differential equations. We solve these using a pseudo spectral method and the rapid expansion method (REM) for the explicit time marching. This method generates a degenerate SV-wave in addition to the P-wave arrivals of interest. To avoid this problem, the elastic wave equation for vertical transversely isotropic (VTI) media can be split into separate wave equations for P- and SV-waves. These separate wave equations are stable, and they can be effectively used to model and migrate seismic data in VTI media where |ε - δ| is small. The artifact for the SV-wave has also been removed. The independent pseudo-differential wave equations can be solved one for each mode using the pseudo spectral method for the spatial derivatives and the REM for the explicit time advance of the wavefield. We show numerically stable and high-resolution modeling and RTM results for the pure P-wave mode in VTI media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.