Abstract
To find the most rapidly evolving regions in the yeast genome we compared most of chromosome III from three closely related lineages of the wild yeast Saccharomyces paradoxus. Unexpectedly, the centromere appears to be the fastest-evolving part of the chromosome, evolving even faster than DNA sequences unlikely to be under selective constraint (i.e., synonymous sites after correcting for codon usage bias and remnant transposable elements). Centromeres on other chromosomes also show an elevated rate of nucleotide substitution. Rapid centromere evolution has also been reported for some plants and animals and has been attributed to selection for inclusion in the egg or the ovule at female meiosis. But Saccharomyces yeasts have symmetrical meioses with all four products surviving, thus providing no opportunity for meiotic drive. In addition, yeast centromeres show the high levels of polymorphism expected under a neutral model of molecular evolution. We suggest that yeast centromeres suffer an elevated rate of mutation relative to other chromosomal regions and they change through a process of "centromere drift," not drive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.