Abstract

Tissue vibrations in the larynx produce most sounds that comprise vocal communication in mammals. Larynx morphology is thus predicted to be a key target for selection, particularly in species with highly developed vocal communication systems. Here, we present a novel database of digitally modeled scanned larynges from 55 different mammalian species, representing a wide range of body sizes in the primate and carnivoran orders. Using phylogenetic comparative methods, we demonstrate that the primate larynx has evolved more rapidly than the carnivoran larynx, resulting in a pattern of larger size and increased deviation from expected allometry with body size. These results imply fundamental differences between primates and carnivorans in the balance of selective forces that constrain larynx size and highlight an evolutionary flexibility in primates that may help explain why we have developed complex and diverse uses of the vocal organ for communication.

Highlights

  • Recent years have witnessed a renaissance in research into the evolutionary and mechanistic basis of mammalian vocal communication

  • The results described above highlight a clear pattern: relative to carnivoran larynges, primate larynges are significantly larger with respect to body size, more variable in size, and have evolved faster

  • A parallel example comes from studies of relative brain size, where interspecific differences are commonly interpreted as reflecting selection for structural/functional enhancements of the brain, but large-scale comparisons akin to those performed here suggest a primary role for selection on body size [26]

Read more

Summary

Introduction

Recent years have witnessed a renaissance in research into the evolutionary and mechanistic basis of mammalian vocal communication. The second is the comparative application of these theories to large quantities of interspecific data, using phylogenetically controlled methods designed to address fundamental questions about trait evolution, including, e.g., the roles of sexual selection, “honest” indicators of caller characteristics, ecological factors, and morphological and neural specializations for vocal signals [5,6,7,8,9,10].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.