Abstract

The high error rate inherent in all RNA synthesis provides RNA virus genomes with extremely high mutation rates. Thus nearly all large RNA virus clonal populations are quasispecies collections of differing, related genomes (14, 49). These rapidly mutating populations can remain remarkably stable under certain conditions of replication. Under other conditions, virus-population equilibria become disturbed, and extremely rapid evolution can result. This extreme variability and rapid evolution can cause severe problems with previously unknown virus diseases (such as AIDS). It also presents daunting challenges for the design of effective vaccines for the control of diseases caused by rapidly evolving RNA virus populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.