Abstract

Abstract Low-CAPE (i.e., CAPE ≤ 1000 J kg−1) severe thunderstorms are common in the greater southeastern United States (including the Tennessee and Ohio valleys). These events are often poorly forecasted, and the environments in which they occur may rapidly evolve. Real-data simulations of 11 low-CAPE severe events and 6 low-CAPE nonsevere events were performed at convection-allowing resolution. Some amount of surface-based destabilization occurred during all simulated events over the 3-h period prior to convection. Most simulated severe events experienced comparatively large destabilization relative to the nonsevere events as a result of surface warming, cooling aloft, and surface moistening. The release of potential instability by large-scale forcing for ascent likely influenced the cooling aloft in some cases. Surface warming was attributable primarily to warm advection and appeared to be an important discriminator between severe and nonsevere simulated events. Severe events were also found to have larger low-level wind shear than nonsevere events, particularly during nocturnal cases. Because of the rapid destabilization that occurred within 3 h in the simulated events, it is evident that 3–6-hourly model output may not be adequate for forecasting severe events in high-shear, low-CAPE environments. Monitoring of high-resolution model forecasts and surface observations may be necessary to identify a rapidly changing severe environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call