Abstract

Organic semiconductors (OSC) offer tremendous potential across a wide range of (opto)electronic applications. OSC development, however, is often limited by trial-and-error design, with computational modeling approaches deployed to evaluate and screen candidates through a suite of molecular and materials descriptors that generally require hours to days of computational time to accumulate. Such bottlenecks slow the pace and limit the exploration of the vast chemical space comprising OSC. When considering charge-carrier transport in OSC, a key parameter of interest is the intermolecular electronic coupling. Here, we introduce a machine learning (ML) model to predict intermolecular electronic couplings in organic crystalline materials from their three-dimensional (3D) molecular geometries. The ML predictions take only a few seconds of computing time compared to hours by density functional theory (DFT) methods. To demonstrate the utility of the ML predictions, we deploy the ML model in conjunction with mathematical formulations to rapidly screen the charge-carrier mobility anisotropy for more than 60,000 molecular crystal structures and compare the ML predictions to DFT benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.