Abstract
In the Local Group, nearly all of the dwarf galaxies (M_star < 10^9 M_sun) that are satellites within 300 kpc (the virial radius) of the Milky Way (MW) and Andromeda (M31) have quiescent star formation and little-to-no cold gas. This contrasts strongly with comparatively isolated dwarf galaxies, which are almost all actively star-forming and gas-rich. This near dichotomy implies a rapid transformation of satellite dwarf galaxies after falling into the halos of the MW or M31. We combine the observed quiescent fractions for satellites of the MW and M31 with the infall times of satellites from the Exploring the Local Volume in Simulations (ELVIS) suite of cosmological zoom-in simulations to determine the typical timescales over which environmental processes within the MW/M31 halos remove gas and quench star formation in low-mass satellite galaxies. The quenching timescales for satellites with M_star < 10^8 M_sun are short, < 2 Gyr, and quenching is more rapid at lower M_star. These satellite quenching timescales can be 1 - 2 Gyr longer if one includes the time that satellites were environmentally preprocessed by low-mass groups prior to MW/M31 infall. We compare with quenching timescales for more massive satellites from previous works to synthesize the nature of satellite galaxy quenching across the observable range of M_star = 10^{3-11} M_sun. The satellite quenching timescale increases rapidly with satellite M_star, peaking at ~9.5 Gyr for M_star ~ 10^9 M_sun, and the timescale rapidly decreases at higher M_star to < 5 Gyr at M_star > 5 x 10^9 M_sun. Overall, galaxies with M_star ~ 10^9 M_sun, similar to the Magellanic Clouds, exhibit the longest quenching timescales, regardless of environmental or internal mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.